Gate 16th Feb Evening
Q. 1 Find Z - parameter $\left(\mathrm{Z}_{11}, \mathrm{Z}_{12}, \mathrm{Z}_{21}, \mathrm{Z}_{22}\right)$

Solution:

$$
\left[\begin{array}{ll}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right]
$$

Q. 2 Find $R_{\text {eq }}$

Solution: (14R/3)
Q. 3 A stable LTI system has a transfer function $H(S)=\frac{1}{S^{2}+S-6}$ to make this system causal it needs to be cascaded with another LTI system having T.F. $\mathrm{H}_{1}(\mathrm{~S})$. Then $\mathrm{H}_{1}(\mathrm{~S})$ is
(a) $\mathrm{S}+3$
(b) $\mathrm{S}-2$
(c) $\mathrm{S}-6$
(d) $\mathrm{S}+1$

Solution: (b)

$$
\mathrm{H}(\mathrm{~S})=\frac{1}{(\mathrm{~S}-2)(\mathrm{S}+3)}
$$

If

$$
\mathrm{H}_{1}(\mathrm{~S})=(\mathrm{S}-2)
$$

then
$\mathrm{H}(\mathrm{S}) \mathrm{H}_{1}(\mathrm{~S})=\frac{1}{(\mathrm{~S}+3)}$
then

\Rightarrow Casual
Q. 4 If sequence of 12 consecutive odd number are given, sum of first 5 number is 485 . What is the sum of last 5 consecutive numbers.

Solution: (555)

$$
\begin{aligned}
\mathrm{n}+(\mathrm{n}+2)+(\mathrm{n}+4)+(\mathrm{n}+6) & +(\mathrm{n}+8)=485 \\
5 \mathrm{n}+20 & =485 \\
\mathrm{n} & =\frac{465}{5}=93 \\
(\mathrm{n}+14)+(\mathrm{n}+16)+(\mathrm{n}+18) & +(\mathrm{n}+20)+(\mathrm{n}+22)=? \\
& =5 \mathrm{n}+90 \\
& =5(93)+90=90+450+15=555
\end{aligned}
$$

Q. 5 To find: Which circuit is this?

(a) Voltage control, voltage source
(b) Voltage control, current source
(c) Current control, current source
(d) Current control, voltage source

Solution: (c)

Q. 6 If the unilateral L.T. of signal $f(t)$ is given as $\frac{1}{S^{2}+S+1}$ then the Laplace transform of signal t.f(t) will be \qquad
(a) $\frac{1}{\left(\mathrm{~S}^{2}+\mathrm{S}+1\right)^{2}}$
(b) $\frac{1}{\mathrm{~S}^{2}+\mathrm{S}+1}$
(c) $\frac{-2 \mathrm{~S}+1}{\mathrm{~S}^{2}+\mathrm{S}+1}$
(d) $\frac{2 \mathrm{~S}+1}{\left(\mathrm{~S}^{2}+\mathrm{S}+1\right)^{2}}$

Solution: (d)

$$
\begin{aligned}
f(t) & \leftrightarrow \frac{1}{\left(S^{2}+S+1\right)} \\
f(t) & \leftrightarrow-\frac{d}{d S}\left[\frac{1}{\left(S^{2}+S+1\right)}\right] \\
& =+\frac{1(2 S+1)}{\left(S^{2}+S+1\right)^{2}}=\frac{(2 S+1)}{\left(S^{2}+S+1\right)^{2}}
\end{aligned}
$$

Q. 7 If a signal $\mathrm{x}(\mathrm{n})=(0.5)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$ is convolued with itself the signal obtained is $\mathrm{y}(\mathrm{n})$, then the value of $\mathrm{Y}(0)=$ \qquad -.

Solution: (0)

$$
\begin{aligned}
& y_{(n)}=(0.5)^{n} u(n) \times(0.5)^{n} u(n) \\
& y_{(n)}=\sum_{k=-\infty}^{\infty}(0.5)^{\mathrm{k}} u(k)(0.5)^{n-k} u(n-k) \\
& y_{(n)}=\sum_{k=0}^{n}(0.5)^{n} 1 ; n \geq 0=(0.5)^{\circ}+(0.5)^{1}+\ldots .+(0.5)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& y_{(n)}=\frac{\left((0.5)^{n+1}-1\right)}{-0.5} u[n] \\
& y_{(n)}=2\left(1-(0.5)^{n+1}\right) u(n) \\
& Y(z)=\frac{2 z}{z-1}-\frac{z}{z-0.5} \\
& Y(0)=0
\end{aligned}
$$

Q. 8 If $\left(\frac{2}{3}\right)^{n} u(n+3) \leftrightarrow \frac{A e^{-J 6 \pi f}}{1-\frac{2}{3} e^{-J 2 \pi f}}$ where $u(n)$ is unit step sequence then the value of A

Solution: (3.375)

$$
\begin{aligned}
& \begin{aligned}
& u(n) \leftrightarrow \frac{Z}{Z-1} \\
& a^{n} u(n) \leftrightarrow \frac{Z}{Z-a} \\
&\left(\frac{2}{3}\right)^{-3} \times\left(\frac{2}{3}\right)^{n+3} u(n+3) \leftrightarrow\left(\frac{2}{3}\right)^{-3} \times Z^{+3} \frac{Z}{\left(Z-\frac{2}{3}\right)} \\
&\text { Put } \left.\begin{array}{l}
Z
\end{array}\right)=e^{\mathrm{J} \omega}=e^{\mathrm{J} 2 \pi f} \\
&=\left(\frac{2}{3}\right)^{-3} \frac{\mathrm{e}^{\mathrm{j} 6 \pi f} \times \mathrm{e}^{\mathrm{j} 2 \pi f}}{\left(\mathrm{e}^{\mathrm{j} 2 \pi f}-\frac{2}{3}\right)}=\frac{\left(\frac{2}{3}\right)^{-3} \mathrm{e}^{\mathrm{j} 6 \pi f} \times \mathrm{e}^{\mathrm{j} 2 \pi f}}{\mathrm{e}^{\mathrm{J} 2 \pi f}\left(1-\frac{2}{3} \mathrm{e}^{\mathrm{j} 2 \pi f}\right)} \\
& \therefore \quad \mathrm{A}=\left(\frac{2}{3}\right)^{-3}=\frac{3^{3}}{2^{3}}=\left(\frac{27}{8}\right)
\end{aligned}
\end{aligned}
$$

Q. 9 If $f(x, y)=x^{n} y^{m}=P$. If x is doubled an y is halved, then which relation is true
(a) $2^{n-m} P$
(b) $2^{\mathrm{m}-\mathrm{n}} \mathrm{P}$
(c) $(\mathrm{m}-\mathrm{n}) \mathrm{P}$
(d) $(\mathrm{n}-\mathrm{m}) \mathrm{P}$

Solution：（a）

$$
\begin{aligned}
f(x, y) & =(2 x)^{n} \times\left(\frac{y}{2}\right)^{m} \\
& =2^{n} \times x^{n} \frac{y^{m}}{2^{m}}=\frac{2^{n}}{2^{m}} x^{n} y^{m}=2^{n-m} P
\end{aligned}
$$

Q． 10 Find the magnitude of current in the $1 \mathrm{k} \Omega$ resistor．

Solution：（1 Ampere）

Q． 11 If a matrix $x^{\prime}(t)=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right] x(t)$ ．Then the state transition matrix is given as \qquad
（a）$\left[\begin{array}{ll}1 & 0 \\ 0 & e^{t}\end{array}\right]$
（b）$\left[\begin{array}{ll}1 & \mathrm{e}^{\mathrm{t}}-1 \\ 0 & 1\end{array}\right]$
（c）$\left[\begin{array}{ll}1 & 0 \\ \operatorname{te}^{\mathrm{t}} & 1\end{array}\right]$
（d）$\left[\begin{array}{rr}0 & 1 \\ 1 & e^{\mathrm{t}}\end{array}\right]$

Solution：（b）

Q． 12 If there is a telephone station where time of incoming is independent of the time of other calls coming in past or in future．Then the pdf of this system in a fixed interval of time will be \qquad
（a）Poisson
（b）Gaussion
（c）Gamma
（d）Binomial

Solution：（a）

India's Best Institute for IES, GATE \& PSUs
Q. 13 If STA 1423 and starting address of the program was IFFEH. Then instruction is fetched, executed by the $\mu \mathrm{P}$. Then the data present at the $\mathrm{A}_{15} \mathrm{~A}_{8}$ will be
(a) IF/ F 2023
(b) IF IF 201414
(c) IF IF 1414
(d) IF IF FE 14

Solution: (c)
IFFE STA 1423
2000
address carried by lines $\mathrm{A}_{15}-\mathrm{A}_{8}$ is 1 F , i.e.
High order address and it carries " 14 " after of code fetch cycle.
Q. 14 If for the given system

Then natural frequency of the system is
(a) 2
(b) 4
(c) 5
(d) 6

Solution: (a)

Q. 15 If the CE-configuration of the BJT transistor is not provided with by-pass capacitor, it will have
(a) $\mathrm{Ri} \uparrow \mathrm{Av}^{\uparrow}$
(b) $\operatorname{Ri} \uparrow \mathrm{Av} \downarrow$
(c) $\operatorname{Ri} \downarrow \mathrm{Av} \downarrow$
(d) $\operatorname{Ri} \downarrow \operatorname{Av} \uparrow$

Solution: (b)

Q. 16 For the given 8×1 multiplex, the output will be

Solution: ($\operatorname{\Sigma m}(3,7,12,13,15))$

$A B D^{C}$	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	1	1	1	0
10	0	0	0	0

$\Sigma \mathrm{m}(3,7,12,13,15)$.
Q. 17 The equivalent output of the circuit will be
(a) $\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}$
(b) $\mathrm{A}^{\prime} \mathrm{B} \mathrm{C}$
(c) $\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$
(d) None of these

Solution: (a)

$$
\begin{aligned}
& \mathrm{Y}=\overline{\mathrm{A} \times \mathrm{B} \times \overline{\mathrm{C}}} \\
& \mathrm{Y}=(\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C})
\end{aligned}
$$

Q. 18 The output voltage V_{0} of the circuit shown is

(a) $-0.3 \mathrm{~V}<\mathrm{V}_{0}<1.3 \mathrm{~V}$
(b) $-0.3 \mathrm{~V}<\mathrm{V}_{0}<2.3 \mathrm{~V}$
(c) $-1.7 \mathrm{~V}<\mathrm{V}_{0}<2.7 \mathrm{~V}$
(d) $-1.7 \mathrm{~V}<\mathrm{V}_{0}<1.3 \mathrm{~V}$

Solution: (c)

Q. 19 If $\mathrm{c}=0$ is the given logic circuit, find y .

(a) $\bar{A} B+A \bar{B}$
(b) $\bar{A}+\bar{B}$
(c) $\mathrm{A}+\mathrm{B}$
(d) AB

Solution: (a)

$$
\begin{aligned}
y & =\overline{\overline{\mathrm{A}+\mathrm{B}}+\mathrm{AB}}=\overline{\mathrm{A}+\mathrm{B}} \times \overline{\mathrm{AB}} \\
& =\overline{(\overline{\mathrm{A}+\mathrm{B}})} \times \overline{\mathrm{AB}}=(\mathrm{A}+\mathrm{B})(\overline{\mathrm{A}}+\overline{\mathrm{B}})=\overline{\mathrm{A}} \mathrm{~B}+\mathrm{A} \overline{\mathrm{~B}}
\end{aligned}
$$

Q. $20 R_{\mathrm{e}}$ is \qquad $\mathrm{k} \Omega$. (Assume $\mathrm{R}=1 \mathrm{k} \Omega$)

Solution: (2.79)
Q. 21 For an antenna radiating in free space, the Electric field at a distance of 1 km is found to be $12 \mathrm{mV} / \mathrm{m}$. Given intrinsic impedance of free space is $120 \pi \Omega$, magnitude of average power density due to this antenna at a distance of 2 km from the antenna is \qquad
Solution: (0.047)
Q. 22 In the above diagram what is the condition satisfied so that the gain of the above common collector amplifer is constant

(a) $\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{E}} \gg \mathrm{V}_{\mathrm{T}}$
(b) $\mathrm{I}_{\mathrm{m}} \mathrm{R}_{\mathrm{E}} \gg 1$
(c) $\mathrm{RI}_{\mathrm{C}} \ll 1$
(d) $\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{E}} \ll \mathrm{V}_{\mathrm{T}}$

Solution: (a)
Q. 23 Parcels from sender S to receiver R passes. Sequentially through two post offices. Each post-offices has a probability $\frac{1}{5}$ of losing an incoming parcel, undependable of all other parcels. Given that parcel is lost, the probability that it was lost by $2^{\text {nd }}$ post office is
\qquad —.

Solution: (0.04)
Q. 24 If the series is given as $13 \mathrm{M}, 17 \mathrm{Q}, 19 \mathrm{~S}$, \qquad then the next term will be
(a) 22 W
(b) 23 W
(c) 22 U
(d) 20 V

Solution: (b)
13 M, 17 Q, 19 S, 23 W
Place apphabet
13 M
14 N
15 O
16 P
17 Q
18 R
19 S
20 T
21 U
22 V
23 W
$13,17,19,23$ are prime numbers.
Q. 25 A person was awarded at a function, he said he was VINDICATED. Which word is nearly related to underline word.
(a) Chastened
(b) Substantiated
(c) Pushed
(d) Defamed

Solution: (b)
Q. 26 A government policy was DISAGREED by the following members, which is nearly selected to underline word
(a) dissent
(b) decent
(c) descent
(d) decadent

Solution: (a)
Q. 27 If in a certain code system, "good luck" is certain "Kcldg" and "All the best" as "tsbhtll". Then "are the exam" is written as
(a) Mxhtr
(b) Mtzhx
(c) cMxht
(d) htcMx

Solution: (a)

Q. 28 The solution of the differential equation is $\frac{d^{2} x}{d t^{2}}+\frac{2 d x}{d t}+x=0$
(a) $\mathrm{ae}^{-\mathrm{t}}$
(b) $a t e^{-t}+b e^{-t}+b e^{-2 t}$
(c) $a e^{-t}+b t e^{-t}$

Where a and b are some constant

Solution: (c)

Q. 29 After the discussion, Tom said to me "Please revert". He excerpts me to
(a) retract
(b) get back to him
(c) move in reverse
(d) retreat

Solution: (b)

Q. $30 \sum_{0}^{\infty} \frac{1}{\mathrm{n}!}=$ value of the sum motion equal to \qquad
(a) $2 \ln 2$
(b) e
(c) 2
(d) $\sqrt{2}$

Solution: (b)

