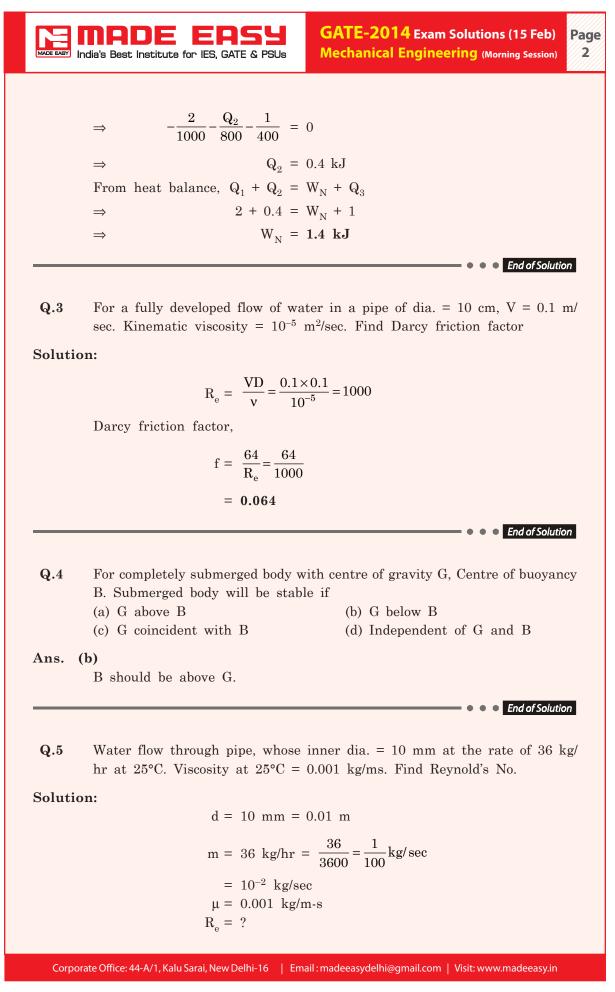
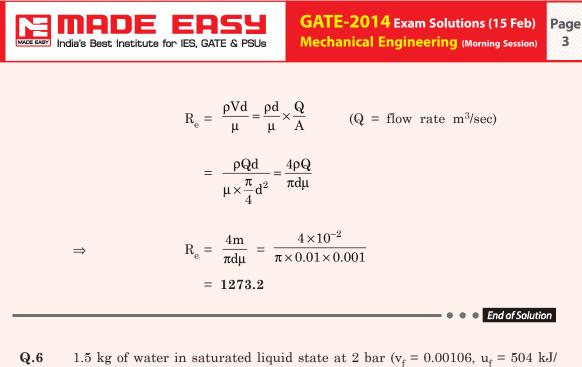


Q.2 A reversible heat engine receive 2 kJ of heat from reservoir at 1000°K and certain amount of heat from another reservoir at 800°K. It rejects 1 kJ of heat to reservoir at 400°K. Find net work output

Solution:

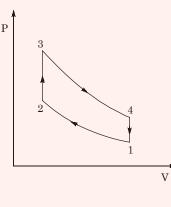

 \Rightarrow



For reversible heat engine

 $(\Delta S)_{\rm Reversible cycle}$ = 0

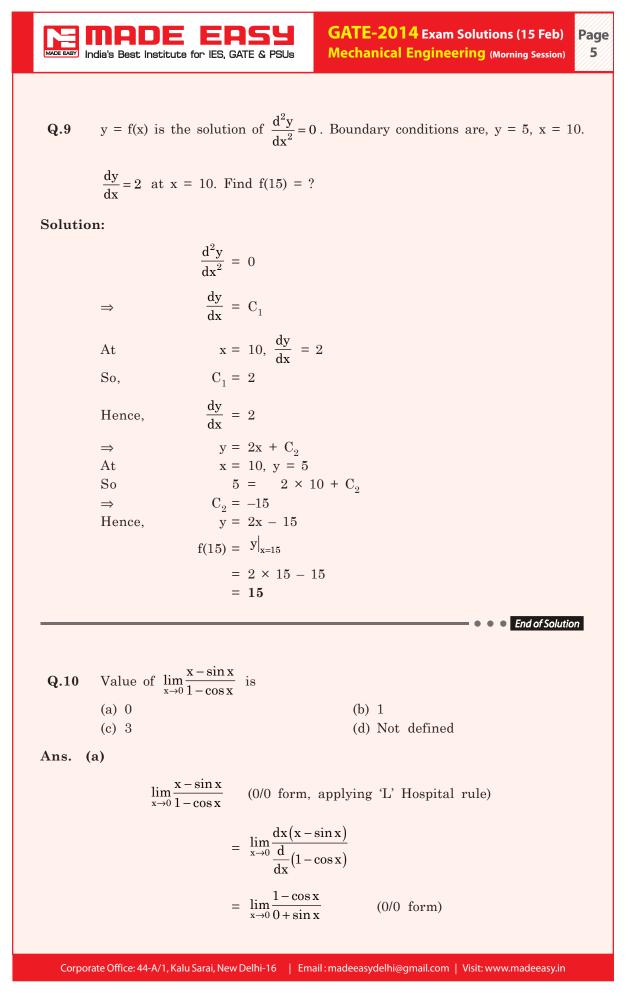
 $-\frac{Q_1}{T_1} - \frac{Q_2}{T_3} + \frac{Q_3}{T_3} = 3$


Q.6 1.5 kg of water in saturated liquid state at 2 bar ($v_f = 0.00106$, $u_f = 504$ kJ/kg, $h_f = 505$ kJ/kg). Heat added at constant pressure till temperature becomes 400°C (v = 1.5, u = 2967, h = 3277 kJ/kg). Find the heat added.

Solution:

From the First law of thermodynamics dq = du + Pdv $= (u_2 - u_1) + P(v_2 - v_1)$ $= (2967 - 504) + 2 \times 10^2(1.5 - 0.00106)$ = 2762.78 kJ/kgFor 1.5 kg of water $Q = 2762.78 \times 1.5$ = 4144.182 kJ*End of Solution*

Q.7 For an Otto cycle, given, pressure at inlet = 0.1 MPa, temperature at inlet = 308° K, $\gamma = 1.4$, R = 288.8 J/kgK. Compression ratio = 8. Maximum temperature = 2660° K. Find the heat supplied.


Solution:

MADE EASY	India's Best Institu	E ERSY Ite for IES, GATE & PSUs	GATE-2014 Exam Solutions (15 Mechanical Engineering (Morning S	
	Given:	$P_{1} = 0.1 \text{ MPa}$ $T_{1} = 308^{\circ}\text{K}$ $\gamma = 1.4$ $R = 288.8 \text{ J/kg}$ $r = 8$ $T_{3} = 2660^{\circ}\text{K}$ $Q_{S} = mC_{v}(T_{3} - C_{v} = \frac{R}{\gamma - 1} = \frac{286}{0.000}$ $= 722 \text{ J/kg}$	T ₂) 8.8 4	(i)
	⇒	$\frac{\mathrm{T}_2}{\mathrm{T}_1} = \left(\frac{\mathrm{V}_1}{\mathrm{V}_2}\right)^{\gamma-1} =$ $\mathrm{T}_2 = 308 \times (8)^{\gamma}$		
		= 707.6°K $Q_{S} = 1 \times 722$ (= 1409.6 k	J/kg	of Solution
Q. 8	Given x is	random variable, P(x	x) is probability density	
		$\begin{array}{c c} x & 1 \\ P(x) & 0.3 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Find stand	ard deviation.		
	Find stands (a) 0.18	ard deviation.	(b) 0.36	
		ard deviation.	(b) 0.36(d) 0.6	
Ans.	(a) 0.18	ard deviation.		
Ans.	(a) 0.18(c) 0.54	ard deviation. $\overline{x} = \frac{\Sigma f_i x_i}{\Sigma f_i}$		
Ans.	(a) 0.18 (c) 0.54 (d) Mean,	$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{f}_{i} \mathbf{x}_{i}}{\Sigma \mathbf{f}_{i}}$ $= \frac{1 \times 0.3 + 2}{0.3 + 100}$		
Ans.	(a) 0.18(c) 0.54(d)	$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{f}_{i} \mathbf{x}_{i}}{\Sigma \mathbf{f}_{i}}$ $= \frac{1 \times 0.3 + 2}{0.3 + 100}$	(d) 0.6 $\frac{\times 0.6 + 3 \times 0.1}{0.6 + 0.1} = 1.8$	

End of Solution

= 0.6

$$\sigma_{1} = \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$
$$= \frac{-6 + 4}{2} + \sqrt{\left(\frac{-6 - 4}{2}\right)^{2} + \left(-8\right)^{2}}$$
$$= -1 + \sqrt{25 + 64}$$
$$= 8.4339 \text{ MPa}$$

• • • End of Solution

Q.13 For a job in manufacturing process, arrival rate is 5 per shift of 8 hrs following Poisson's distribution. Service rate for the job is 40 min. Find the ideal time (in hr) of the job

Page

7

GATE-2014 Exam Solutions (15 Feb) Mechanical Engineering (Morning Session)

(a)
$$\frac{-}{4}$$
 (b) $\frac{+}{5}$
(c) $\frac{14}{3}$ (d) $\frac{2}{3}$

Ans. (d)

Arrival rate, $\lambda = \frac{5}{8}$ jobs per hour

Service rate,
$$\mu = \frac{60}{40} = \frac{3}{2}$$
 jobs per hour

Fraction of time job is idle

$$= 1 - \frac{\lambda}{\mu} = 1 - \frac{5}{8} \times \frac{2}{3} = \frac{7}{12}$$

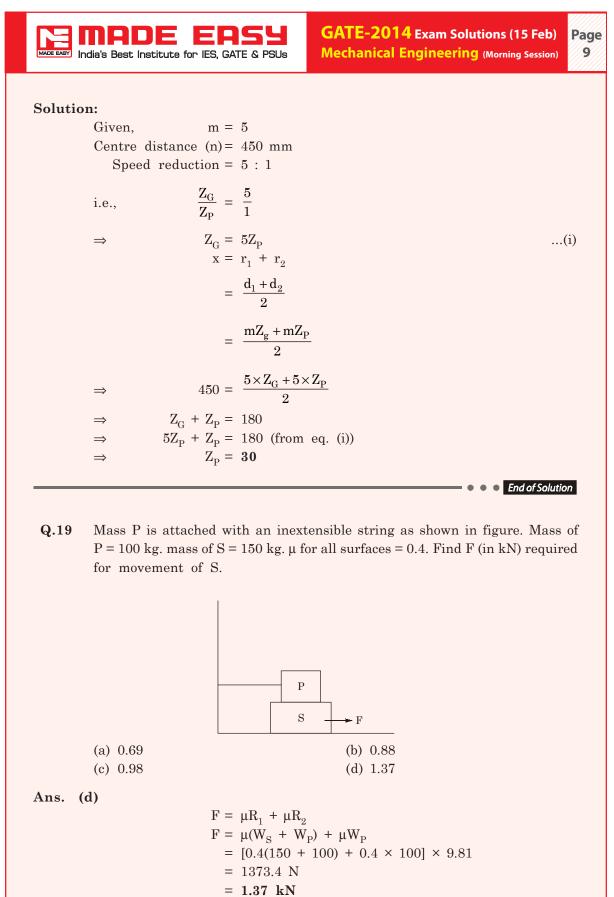
:.

Idle time = Expected waiting time in the system × Probability of idleness

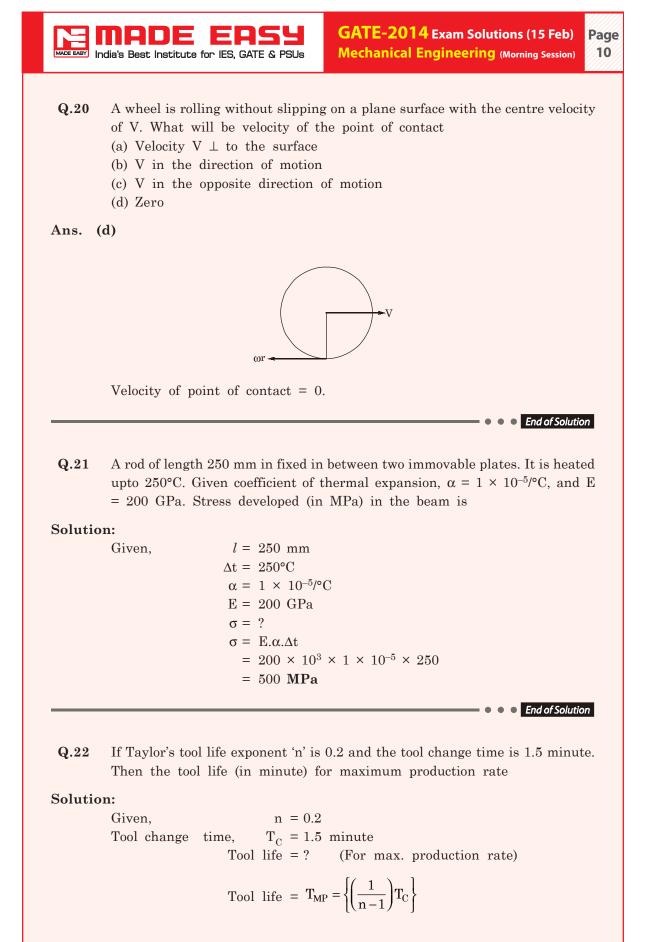
$$= \frac{1}{\mu - \lambda} \times \frac{7}{12} = \frac{1}{\frac{3}{2} - \frac{5}{8}} \times \frac{7}{12} = \frac{1}{\frac{12 - 5}{8} \times \frac{12}{7}}$$
$$= \frac{1}{\frac{7}{8} \times \frac{12}{7}} = \frac{8}{12} = \frac{2}{3}$$

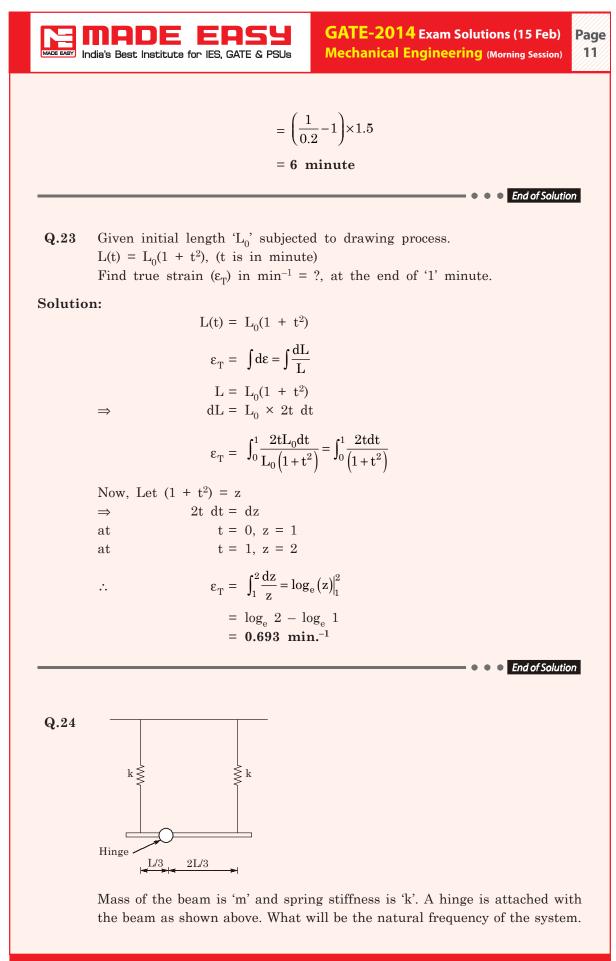
End of Solution

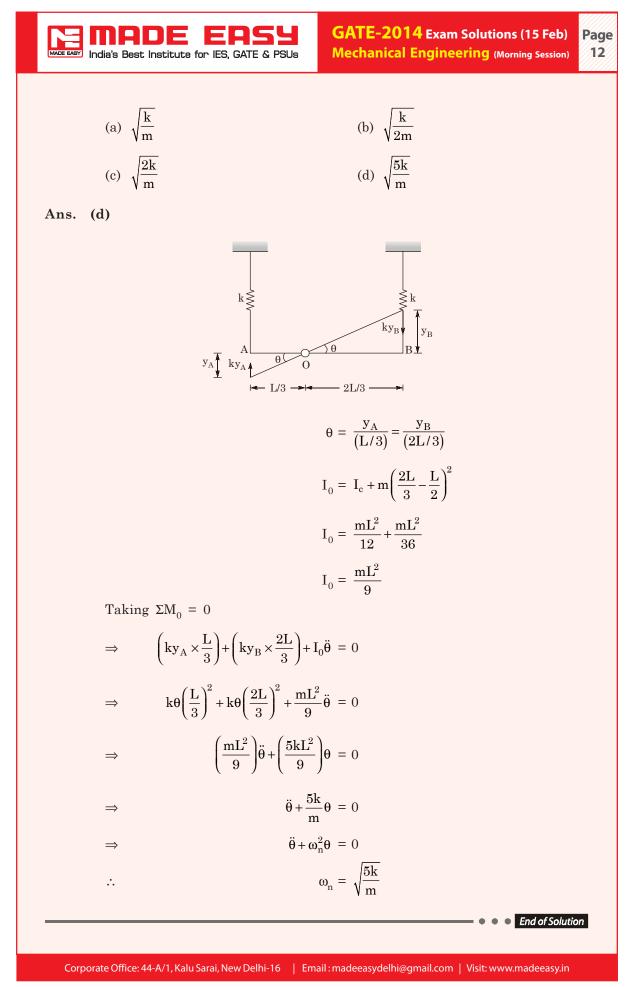
Q.14 Water jet strikes a stationary vertical plate with a volume flow rate of 0.05 m³/sec and exerts a force of 1000 N on the plate. Find out the dia. of jet


Solution:

Given,


 \Rightarrow


 $Q = 0.05 \text{ m}^{3}/\text{sec}$ $F_{N} = 1000 \text{ N}$ d = ? $F_{n} = \rho A V^{2}$ $= \rho A \times \left(\frac{Q}{A}\right)^{2}$ $= \frac{\rho Q^{2}}{A} = \frac{4\rho Q^{2}}{\pi d^{2}}$ $1000 = \frac{4 \times 1000 \times 0.05^{2}}{\pi d^{2}}$


	\Rightarrow d = 0.0564 m
	= 56.4 mm
	• • • End of Solution
Q.15	Which is a CFC refrigerant
	(a) R744 (b) R290 (c) R502 (d) R718
Ans.	
Ans.	$R744 - CO_{2}$
	R290 $ C_3H_8$ (Propane)R502 $ CHClF_3 + CClF_2CF_3$
	$\begin{array}{rcl} \text{R502} & - & \text{CHClF}_3 + \text{CClF}_2\text{CF}_3 \\ \text{R718} & - & \text{Water} \end{array}$
	• • End of Solution
	$\begin{pmatrix} 1 & 3 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 6 & 0 \end{pmatrix}$
Q.16	Given $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{pmatrix} = -12$. Find determinant of $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = ?$
Q.16 Solutio	Given $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{pmatrix} = -12$. Find determinant of $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = ?$
	on:
	on:
	Den: $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$
	on: $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$ $= -96$
	Den: $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$
	on: $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$ $= -96$
Solutio	Son: $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$ $= -96$ Why it is difficult to weld Aluminium (a) low MP of Al
Solutio	Son: $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$ $= -96$ Why it is difficult to weld Aluminium (a) low MP of Al (b) High thermal conductivity
Solutio	Son: $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$ $= -96$ Why it is difficult to weld Aluminium (a) low MP of Al
Solutio	prime $\begin{pmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{pmatrix} = 2^{n} \times -12$ $= 2^{3} \times -12$ $= -96$ Why it is difficult to weld Aluminium (a) low MP of Al (b) High thermal conductivity (c) Softness (d) Specific heat capacity is low

End of Solution

MADE EAEY	MADE EASY India's Best Institute for IES, GATE & PSUs	GATE-2014 Exam Solutions (15 Feb) Mechanical Engineering (Morning Session)	Page 13
Q.25 Ans.	Which one of the following is odd (a) WEKO (c) FNTX (d)	d one out (b) IQWA (d) NVBD	
Q.26 Ans.	Consider the following: I. Mating gear is a higher pair II. Revolute pair is lower pair (a) Both are correct (c) I is incorrect, II is correct (a)	(b) I is correct, II is incorrect (d) Both are incorrect	
	•••	End of Solution	n