MADE EASY	India's Best Institute for IES, GATE & PSUs GATE-2014 Exam Solutions (16 Feb) Page Mechanical Engineering (Morning Session) 1
Q.1	The process utilizing mainly thermal energy for removing material is (a) USM (b) ECM (c) AJM (d) LBM
Ans.	(d) Method Mechanics of Removal USM — Brittle fracture ECM — Electrolysis AJM — Mechanical action LBM — Melting, vaporization i.e., thermal
Q.2	Hot tearing in metal casting is due to (a) high fluidity (b) high melting point temperature (c) wide range of solidification temperature (d) low coefficient of thermal expansion
Ans.	 (c) Due to residual stress, for wide range of solidification temperature hot tears develop in the casting. End of Solution
Q.3	A minimal spanning tree in network model involves (a) all the nodes with cycle/loop allowed (b) all the nodes with cycle/loop not allowed (c) shortest path between start and end nodes (d) All the nodes with directed
Ans.	(b) • • • End of Solution
Q. 4	In which of the following options will the expression $P < M$ is true (a) $M < R < P < S$ (b) $M > S < P < S$ (c) $Q < M < F < P$ (d) $P = A < R < M$
Ans.	(d) End of Solution
Q.5	The value of one US dollar is ₹ 65 compared to last 60 year. The Indian rupee has (a) depressed (b) depreciated (c) appreciated (d) stabilized
Corj	oorate Office: 44-A/1, Kalu Sarai, New Delhi-16 Email : madeeasydelhi@gmail.com Visit: www.madeeasy.in

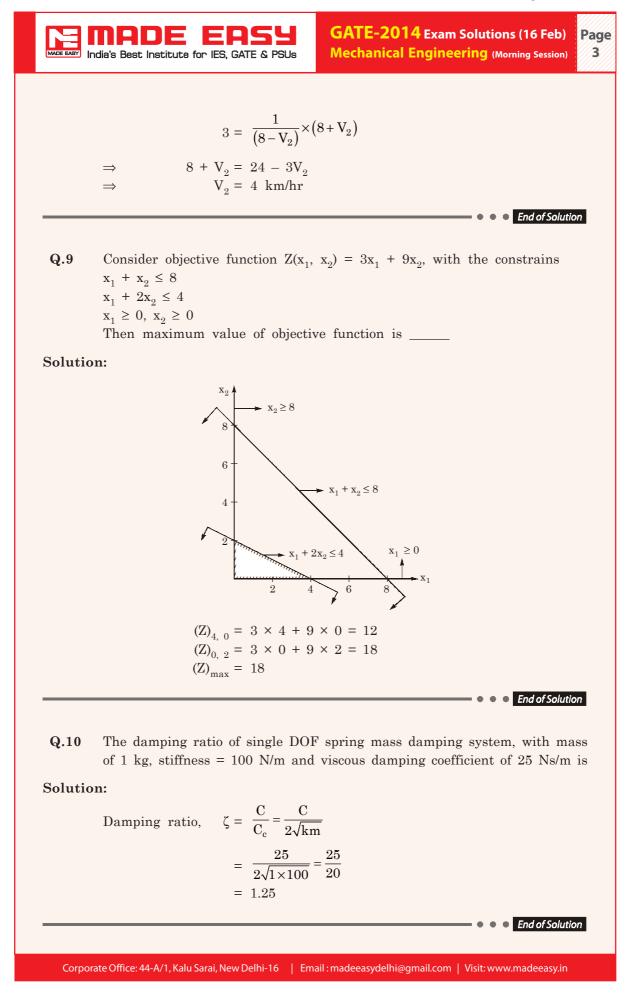
MADE EASY	India's B	RD est Inst	E itute for	IES, GA	TE & PS	:Us		E-2014 Exam Solutions (16 Feb) anical Engineering (Morning Session	
Ans.	. ,	ian ru	pee h	as dep	oreciat	ed.		 Image: Image: Image 	tion
Q.6	(a)	ice is verb adject	ive				`	b) noun d) both verb and noun	
Ans.	Adv					ggestio give a		• • End of Solu	tion
Q.7	(a)	t tern 15Q 15P	n of th	ie seq	uence	7G, 1	(k		lion
	· · /								
Ans.	(b) A	В	С	D	Е	F	7 G		
Ans.	(b)	B	C	D 11 K	E L	F 13 M			

Q.8 A man can row at 8 km/hr in still water. If it takes him thrice as long to row upstream as compared to row downstream velocity of flow in km/hr is

Solution:

Let the velocity of man in still water and velocity of flow is \mathbf{V}_1 and \mathbf{V}_2 respectively.

Given,
$$V_1 = 8 \text{ km/hr}$$

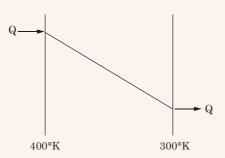

Time taken by the man when it rows along the flow direction

$$t = \frac{x}{V_1 + V_2} = \frac{x}{8 + V_2} \qquad ...(i)$$

and time taken when rows against the flow direction

$$3t = \frac{x}{8 - V_2} \qquad \dots (ii)$$

Dividing eq. (ii) by (i), we get



GATE-2014 Exam Solutions (16 Feb) Page Mechanical Engineering (Morning Session) 4

Q.11 An amount of 100 kW of heat is transferred through a wall in steady state. One side of wall is maintained at 127°C and other at 27°C. The entropy generation (in W/K) is

Solution:

$$(\mathbf{S}_2 - \mathbf{S}_1) = \int_1^2 \frac{\mathrm{d}\mathbf{Q}}{\mathrm{T}} + (\Delta \mathbf{S})_{\text{gen}}$$

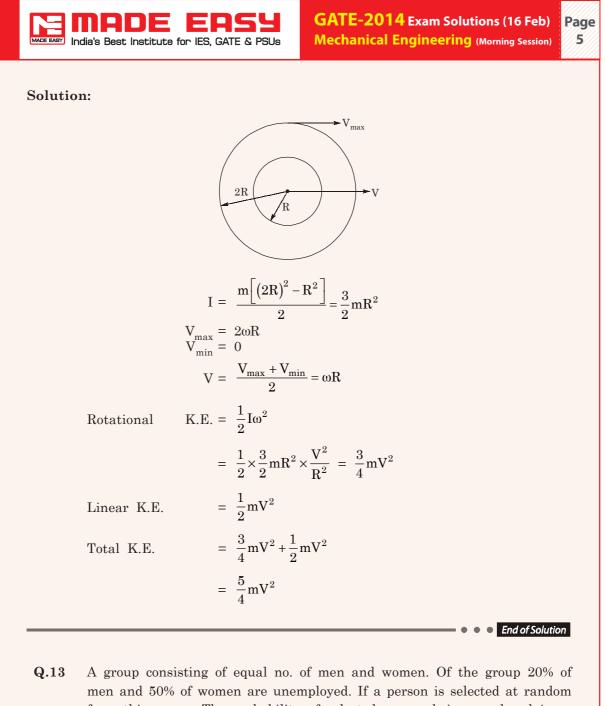
 \Rightarrow

 \Rightarrow

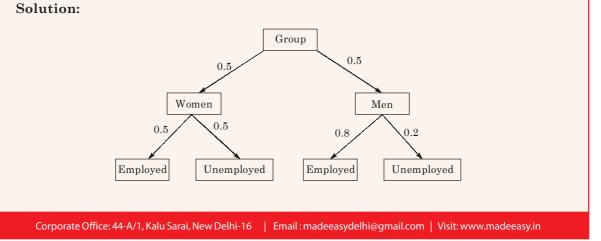
:..

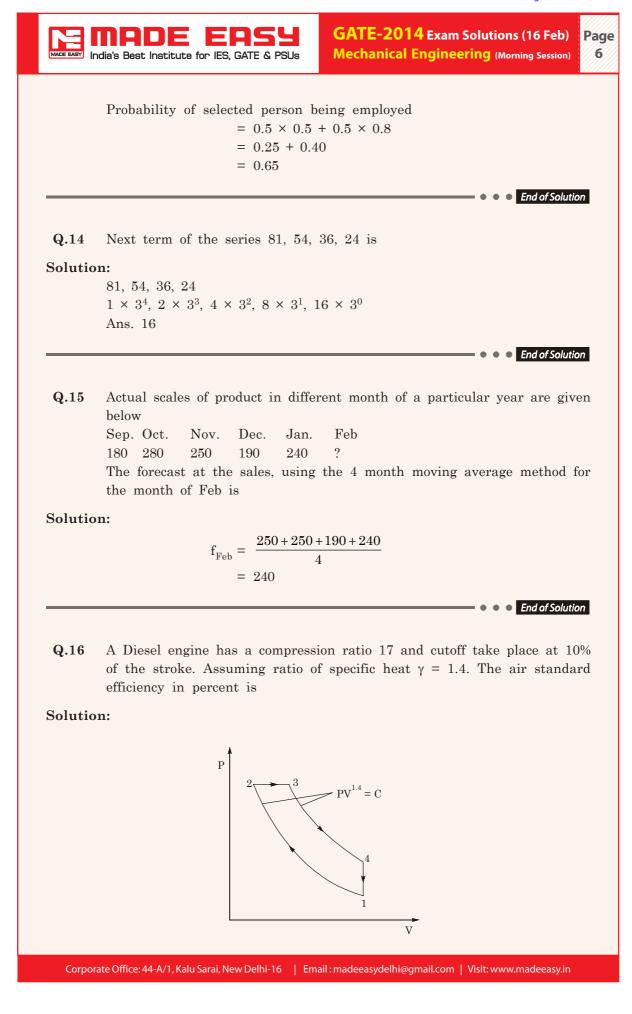
$$0 = \frac{100}{400} - \frac{100}{300} + (\Delta S)_{gen}$$
$$(\Delta S)_{gen} = 0.083 \text{ kW/K}$$
$$= 83.33 \text{ W/K}$$

Alternate:


$$\Delta S_1 = \frac{Q}{T_1} = \frac{Q}{400}$$

$$\Delta S_{2} = \frac{Q}{T_{2}} = -\frac{Q}{300}$$
$$\Delta S = \Delta S_{1} + \Delta S_{2}$$
$$= \frac{100 \times 10^{3}}{400} - \frac{100 \times 10^{3}}{300}$$
$$= -\frac{1000}{12} = -83.33 \,\text{W/K}$$


End of Solution


Q.12 Annular disc has mass m, inner radius R, outer radius = 2R. Disc rolls on a flat surface without slipping. If the velocity of centre of mass is V. Then kinetic energy is

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : madeeasydelhi@gmail.com | Visit: www.madeeasy.in

from this group. The probability of selected person being employed is

MADE EASY MADE EASY India's Best Institute for IES, GATE & PSUs

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 $\frac{V_3 - V_2}{V_1 - V_2} = 0.1$

 $\frac{\frac{V_3}{V_2} - 1}{\frac{V_1}{V_2} - 1} = 0.1$

 $\frac{\rho - 1}{r - 1} = 0.1$

 $\frac{\rho - 1}{17 - 1} = 0.1$

η

 $\rho = 2.6$

GATE-2014 Exam Solutions (16 Feb) Page Mechanical Engineering (Morning Session) 7

$$(V_{3} - V_{2}) = \frac{10}{100} (V_{1} - V_{2})$$

$$\Rightarrow \qquad \frac{V_{3} - V_{2}}{V_{1} - V_{2}} = 0.1$$

$$\Rightarrow \qquad \frac{\frac{V_{3}}{V_{2}} - 1}{\frac{V_{1}}{V_{2}} - 1} = 0.1$$

$$\Rightarrow \qquad \frac{\rho - 1}{r - 1} = 0.1$$

$$\Rightarrow \qquad \frac{\rho - 1}{17 - 1} = 0.1$$

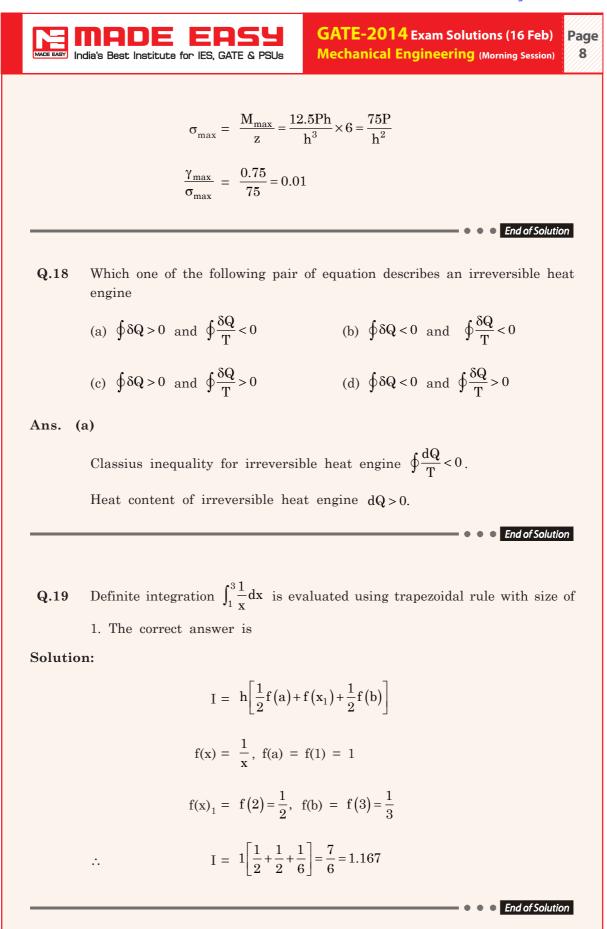
$$\Rightarrow \qquad \rho = 2.6$$
(\rho = cut off ratio and r = compression ratio)

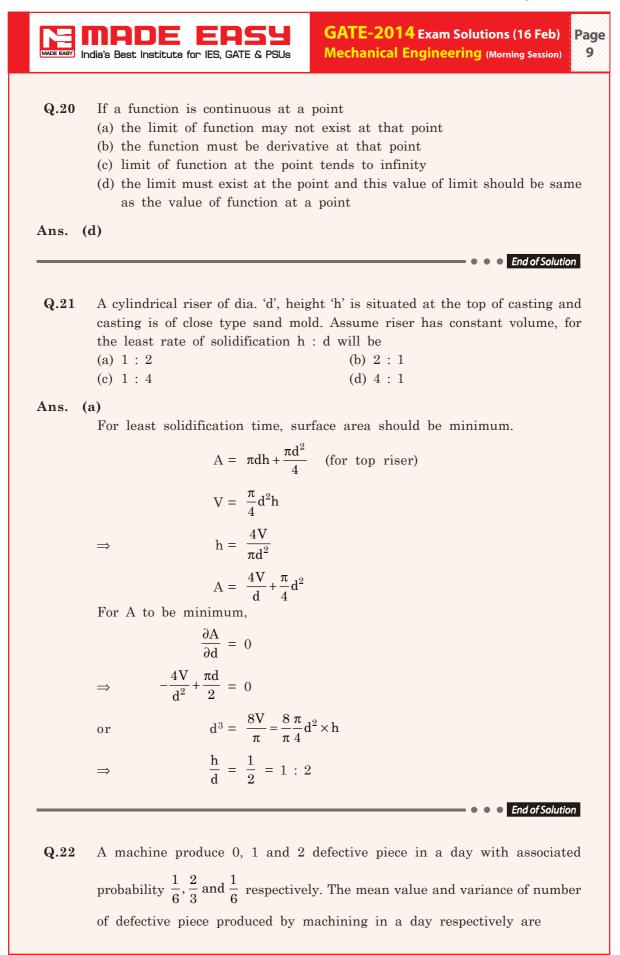
Thermal efficiency,

$$th = 1 - \frac{1}{r^{\gamma - 1}} \left[\frac{\rho^{r} - 1}{\gamma(\rho - 1)} \right]$$
$$= 1 - \frac{1}{17^{0.4}} \left[\frac{2.6^{1.4} - 1}{1.4 \times (2.6 - 1)} \right]$$
$$= 59.6\%$$

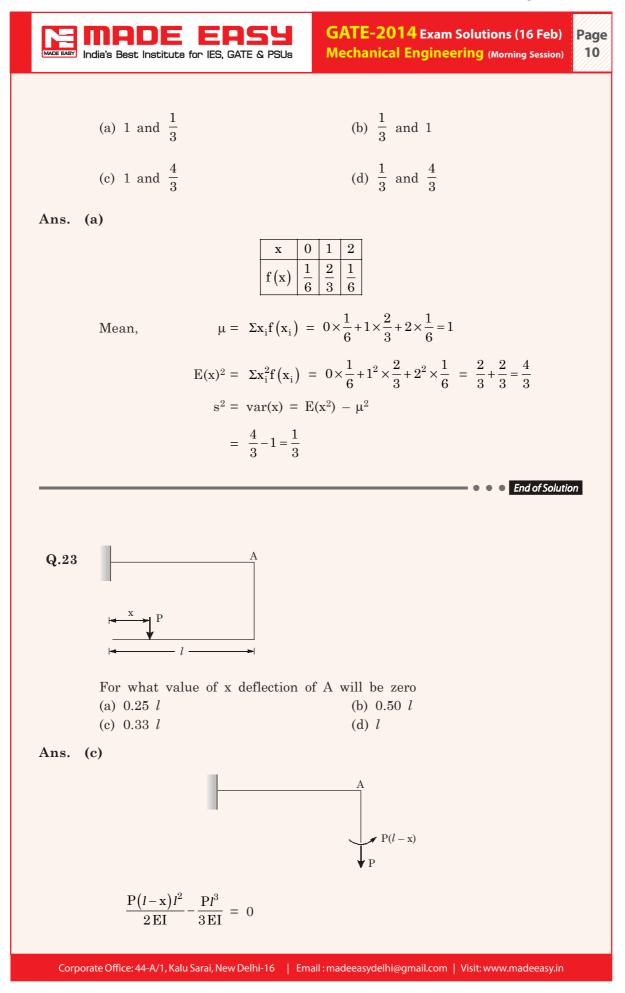
End of Solution

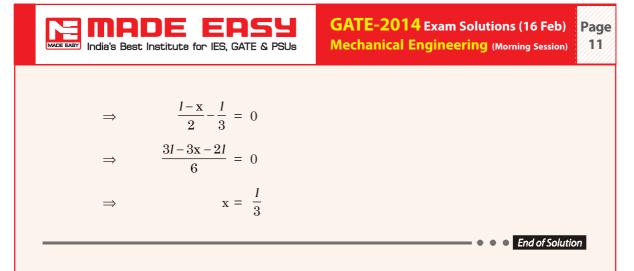
Q.17 Consider a simply supported beam of length 50h with a rectangular crosssection of depth 'h' and width 2h, the load carried at mid point. Find the ratio of the maximum shear stress to the maximum bending stress in the beam.

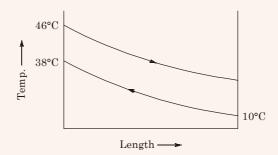

(a)	0.02	(b)	0.10
(c)	0.05	(d)	0.01


Ans. (d)

$$\gamma_{\text{max}} = \frac{3}{2} \frac{P}{A} = \frac{3P}{4h^2}$$
$$M_{\text{max}} = \frac{PL}{4} = \frac{P \times 50h}{4} = 12.5 \text{ Ph}$$


I =
$$\frac{bh^2}{12}$$
, z = $\frac{bh^2}{6} \frac{bh^2}{6} = \frac{2h \times h^2}{6} = \frac{h^3}{6}$


Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : madeeasydelhi@gmail.com | Visit: www.madeeasy.in


Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : madeeasydelhi@gmail.com | Visit: www.madeeasy.in

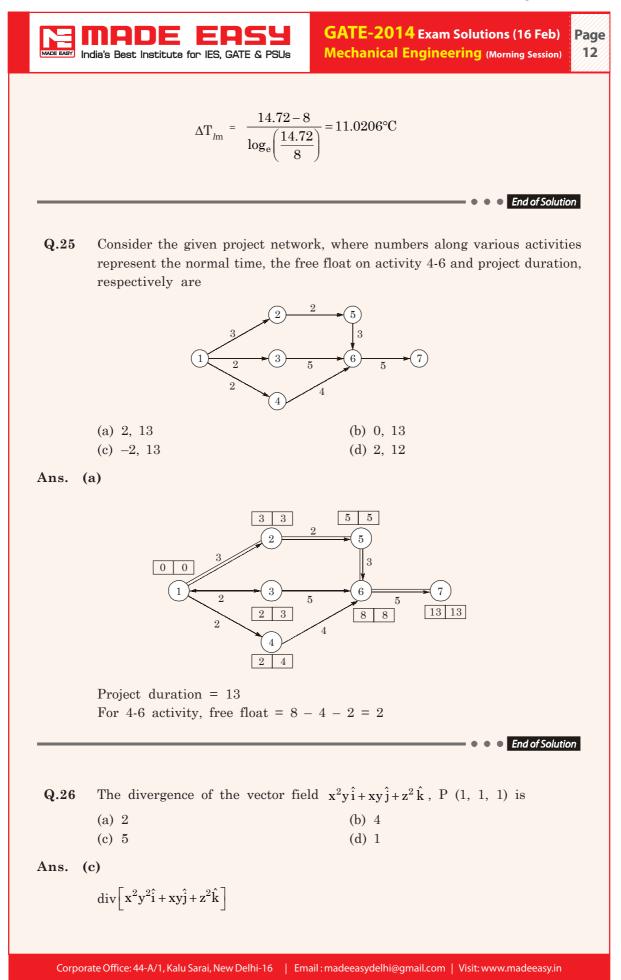
Q.24 A double pipe counter flow heat exchanger transfers heat between two water streams. Tube side water at 19 ltr/s is heated from 10°C to 38°. Shell side water of 25 lts/s is entering at 46°C. Assume constant properties of water, density is 1000 kg/m³ and specific heat is 4186 J/kgK. The LMTD (in °C) is

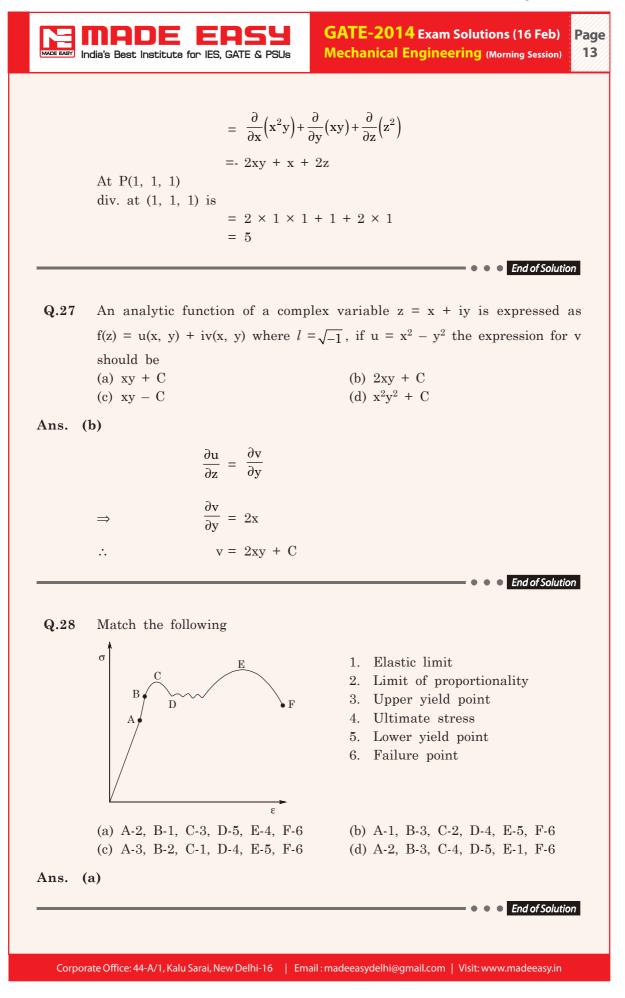
Solution:

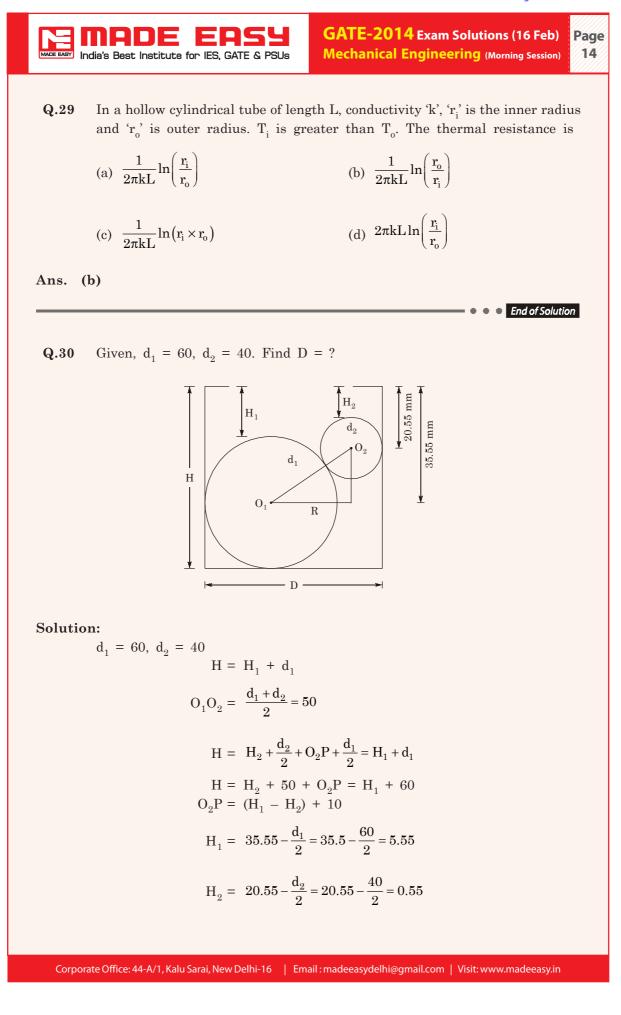
$$\rho = 1000 \text{ kg/m}^3$$
$$\dot{m}_c = 19 \text{ lit./s}$$
$$\dot{m}_h = 25 \text{ lit./s}$$

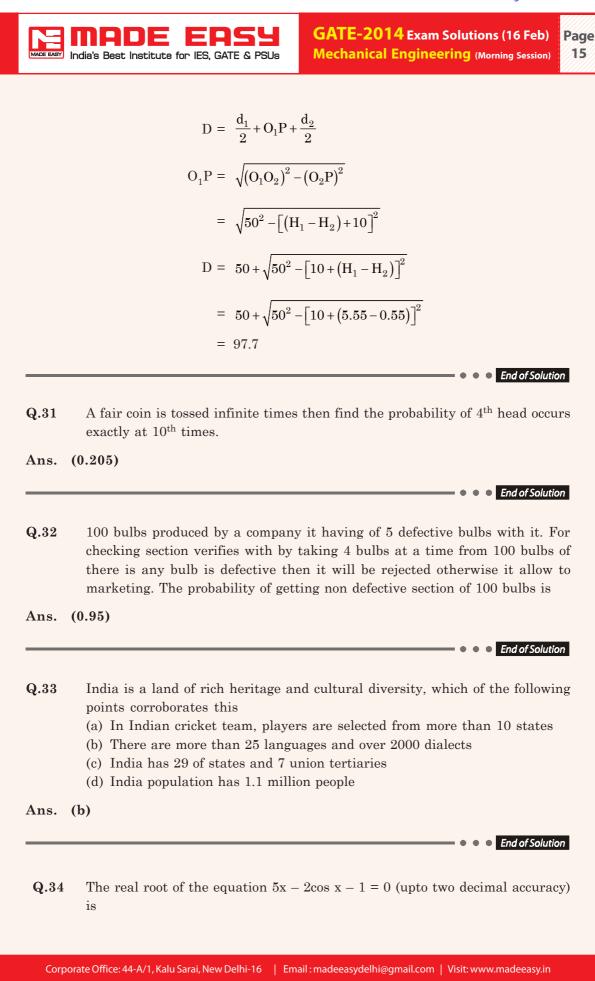
From energy balance,

$$\dot{m}_{c}C_{w}(38-10) = \dot{m}_{h}C_{w}(46-x)$$


r


 \Rightarrow


or


 $\frac{19}{25} \times 28 = 46 - x$ x = 24.72°C $T_{h_1} \ = \ 46^{\circ}\mathrm{C}, \ T_{h_2} \ = \ 24.72^{\circ}\mathrm{C}, \ T_{c_1} \ = \ 10^{\circ}\mathrm{C}, \ T_{c_2} \ = \ 38^{\circ}\mathrm{C}$ $\Delta T_1 = T_{h_1} - T_{c_1} = 46 - 38 = 8^{\circ}C$ $\Delta T_2 = T_{h_2} - T_{c_1} = 24.72 - 10 = 14.72^{\circ}C$

$$\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\log_e \left(\frac{\Delta T_1}{\Delta T_2}\right)} = \frac{\Delta T_2 - \Delta T_1}{\log_e \left(\frac{\Delta T_2}{\Delta T_1}\right)} \quad (\because \Delta T_2 > \Delta T_1)$$

$f(x) = 5x - 2 \cos x - 1$ $f'(x) = 5 + 2 \sin x$ By Newton Raphson's equation $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Assuming $x_0 = 1 \qquad (x = 1 \text{ rad.} = 57.32^\circ)$ $\Rightarrow \qquad x_1 = 1 - \frac{5 \times 1 - 2\cos(57.32) - 1}{5 + 2\sin(57.32)}$ $\Rightarrow \qquad x_1 = 0.5632$ Iterating again $x_2 = 0.5632 - \frac{5 \times 0.5632 - 2\cos(32.27) - 1}{5 + 2\sin(32.27)}$ $= 0.5425$	MADE EASY India's Best Institute for	EASY or IES, GATE & PSUs	GATE-2014 Exam Solutions (16 Feb) Mechanical Engineering (Morning Session)	Page 16
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Solution:	f'(x) = 5 + 2 s		
Assuming $x_0 = 1$ (x = 1 rad. = 57.32°) $x_1 = 1 - \frac{5 \times 1 - 2\cos(57.32) - 1}{5 + 2\sin(57.32)}$ $x_1 = 0.5632$ Iterating again $x_2 = 0.5632 - \frac{5 \times 0.5632 - 2\cos(32.27) - 1}{5 + 2\sin(32.27)}$ = 0.5425 Iterating again $x_3 = 0.5425 - \frac{5 \times 0.5425 - 2\cos(31.09) - 1}{5 + 2\sin(31.09)}$ = 0.5424 Required answer is 0.54	by Newton Raphson's e		\mathbf{x}_{n})	
$\Rightarrow \qquad x_{1} = 1 - \frac{5 \times 1 - 2\cos(57.32) - 1}{5 + 2\sin(57.32)}$ $\Rightarrow \qquad x_{1} = 0.5632$ Iterating again $x_{2} = 0.5632 - \frac{5 \times 0.5632 - 2\cos(32.27) - 1}{5 + 2\sin(32.27)}$ $= 0.5425$ Iterating again $x_{3} = 0.5425 - \frac{5 \times 0.5425 - 2\cos(31.09) - 1}{5 + 2\sin(31.09)}$ $= 0.5424$ Required answer is 0.54	Assuming			
$\Rightarrow x_{1} = 0.5632$ Iterating again $x_{2} = 0.5632 - \frac{5 \times 0.5632 - 2\cos(32.27) - 1}{5 + 2\sin(32.27)}$ $= 0.5425$ Iterating again $x_{3} = 0.5425 - \frac{5 \times 0.5425 - 2\cos(31.09) - 1}{5 + 2\sin(31.09)}$ $= 0.5424$ Required answer is 0.54		0		
$\begin{aligned} \mathbf{x}_2 &= \ 0.5632 - \frac{5 \times 0.5632 - 2\cos(32.27) - 1}{5 + 2\sin(32.27)} \\ &= \ 0.5425 \end{aligned}$ Iterating again $\begin{aligned} \mathbf{x}_3 &= \ 0.5425 - \frac{5 \times 0.5425 - 2\cos(31.09) - 1}{5 + 2\sin(31.09)} \\ &= \ 0.5424 \end{aligned}$ Required answer is 0.54 \end{aligned}	\Rightarrow		$+2\sin(57.32)$	
Iterating again $x_3 = 0.5425 - \frac{5 \times 0.5425 - 2\cos(31.09) - 1}{5 + 2\sin(31.09)}$ $= 0.5424$ Required answer is 0.54	Iterating again	x ₂ = 0.5632 -	$-\frac{5 \times 0.5632 - 2\cos(32.27) - 1}{5 + 2\sin(32.27)}$	
= 0.5424 Required answer is 0.54	Iterating again	= 0.5425		
= 0.5424 Required answer is 0.54		x ₃ = 0.5425 -	$-\frac{5 \times 0.5425 - 2\cos(31.09) - 1}{5 + 2\sin(31.09)}$	
	Derived energy is 0.5	= 0.5424		
		4	a a a FodofSolution	

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : madeeasydelhi@gmail.com | Visit: www.madeeasy.in