GATE 2014 - A Brief Analysis (Based on student test experiences in the stream of EE on $\mathbf{1}^{\text {st }}$ February, 2014-Second Session)

Section wise analysis of the paper

	$\mathbf{1}$ Mark	$\mathbf{2}$ Marks	Total No of Questions
Engineering M athematics	2	3	5
Networks	2	2	4
Analog Circuits	1	2	3
Digital Circuits	1	2	3
Signals and Systems	6	4	10
Control Systems	2	3	5
Electrical M achines	3	3	6
Power Systems	2	6	8
Measurements	2	2	4
Power Electronics	2	2	4
Field Theory	2	1	3
Verbal Ability	2	2	4
Numerical Ability	3	3	6
	30	35	65

Types of questions asked from each section

Engineering M athematics	There were questions from Algebra, Vector Calculus, Differential Equations, Probability
Networks	Questions from basics concept
Analog Circuits	Questions from Amplifiers and Oscillator
Digital Circuits	Questions from M icroprocessor
Signals and Systems	Questions from Fourier and ZTransform
Control Systems	Questions from Bode Plots, RH Criteria, Transfer Functions
Electrical Machines	Questions from Single Phase Transformer, DC M achines
Power Systems	Questions from Faulty Analysis, Economic Operation
M easurements	Questions from M easuring Instruments
Power Electronics	Questions from Choppers, Rectifiers
Field Theory	Questions from Electric Field and Potential

Questions from the Paper

1. In the given circuit if $\mathrm{R}=\left(25+\frac{\mathrm{I}}{2}\right)$. Then $\mathrm{I}=$ \qquad -.

2. A $3-\phi, 50 \mathrm{~Hz}, 6$ pole motor has rotor resistance of 0.1Ω, reactance 0.92Ω. The slip at full load is 3%. Find the ratio of maximum torque to full load torque.
3. The incremental fuel costs of two generating plants are
$\mathrm{C}_{1}=0.05 \mathrm{Pg}_{1}^{2}+\mathrm{APg}_{1}+\mathrm{B}$
$\mathrm{C}_{2}=0.10 \mathrm{Pg}_{2}^{2}+3 \mathrm{APg}_{2}+2 \mathrm{~B}$
Where A, B are constants. Pg_{1} and Pg_{2} are power generated in plant 1 and 2. The two plants optimally share 1000 MW at an incremental cost of $100 \mathrm{Rs} / \mathrm{MWh}$. The ratio of P_{1} : P_{2} is \qquad .
4. In the following circuit the voltmeter reads \qquad V.

5. If $f(t)$ is continuous time signal, $f(\omega)$ is Fourier transform defined by

$$
\begin{aligned}
& f(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& g(t)=\int_{-\infty}^{\infty} F(u) e^{-j u t} d u
\end{aligned}
$$

The relation between $f(t)$ and $g(t)$ is given by
6. A coin is tossed n times. The probability that difference between head and tail is $(n-3)$ is
(A) $\mathrm{n}_{\mathrm{c}_{\mathrm{n}-3}}$
(B) 2^{-n}
(C) $\mathrm{n}_{\mathrm{c}_{\mathrm{n}-3}} 2^{-\mathrm{n}}$
(D) 0 .
7. A rectifier circuit is shown below. The diode and thyristor are ideal. The load contains $\mathrm{R}=10 \Omega$ and $\mathrm{L}=0.05 \mathrm{H}$. The firing angle ' α ' in degree to obtain a load voltage of 70 V is
\qquad -.
$325 \sin 314 t$

8. The line integral of function $\mathbf{F}=\mathbf{y z i}$ in anticlockwise direction along the circle $x^{2}+y^{2}=1$ at $\mathrm{z}=1$ is \qquad _.
9. If $X(z)=\frac{1}{1-z^{-3}}$ be Z transform of causal signal $x(n)$, then values of $x(2), x(3)$ are
\qquad _.
10. The matrix A is given as $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -6 & -11 & 6 \\ -6 & -11 & 5\end{array}\right]$

The ratio of maximum eigen value to minimum eigen value is \qquad .
11. Consider the K map shown below. Its realization is given by \qquad .

12. Consider the circuit shown

The transfer function of $\frac{v_{0}(\omega)}{v_{i}(\omega)}$ gives bode plot as \qquad -
13.

The output V_{0} is \qquad .
14. Consider the circuit shown below. Given $\mathrm{V}_{\mathrm{C}}(0)=-2 \mathrm{~V}$. The value of current in the circuit at $t=0$ is \qquad

15. A 8 pole, $3-\phi, 50 \mathrm{~Hz}$ inductor motor runs at a speed of 700 rpm . The frequency of rotor current of motor is \qquad .
16. If $f(x)=x e^{-x}$, the maximum value of function in interval $(0, \infty)$ is
(A) e^{-1}
(B)
(C) $1-\mathrm{e}^{-1}$
(D) $1+\mathrm{e}^{-1}$
17. Power consumed by a balanced $3-\phi 3$ wattmeter load is measured by two wattmeter method. The reading of wattmeter one is twice that of second. The load impedance in radians is given by \qquad -.
18. A wien bridge oscillator is given below.

From the circuit the relation between $\mathrm{R}_{3} \& \mathrm{R}_{4} ; \omega$ is given by.
19. In the figure shown power is transferred among all the three elements. The power absorbed by three elements is given by \qquad _.

20. The solution in differential equation $\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-9 \mathrm{x}$ with initial condition $\mathrm{x}(0)=1$ and $\left.\frac{\mathrm{dx}}{\mathrm{dt}}\right|_{\mathrm{t}=0}=1$ is given by \qquad .
21. Consider the circuit shown. The magnitude at mid band voltage gain is \qquad .

22. In RH criteria if all the elements in a row are zero's it indicates.
(A) Roots lies on origin
(B) Roots lies on positive real axis
(C) Roots lie on imaginary axis
(D) Roots lie on negative real axis.
23. If the roots of $a x^{2}+b x+c$ are real and positive \& a, b, c are real. Then $a x^{2}+b|x|+c$ has
(A) no roots
(B) 2 roots
(C) 3 roots
(D) 4 roots.
24. If $\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)^{2}=98$, then $\mathrm{z}^{2}+\frac{1}{\mathrm{z}^{2}}=$ \qquad -.
25. In the press meet regarding the scam the minister said "the buck stops here". What does the minister mean.
(A) He will return the money.
(B) He will take the responsibility.
(C) Money does not matters.
(D) Stop the allegations.
26. In a tetrahedron with four triangular faces if a line is drawn connecting the corners of tetrahedron. The total number of planes will be \qquad -.
27. In a survey, 300 people are asked whether they own a vehicle are not. And the result is shown below.
The percentage of people do not own a scooter is

	Men	Women
Car	40	34
Scooter	30	20
Both	60	46
Don't own a vehicle	20	50

